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Abstract

This study is motivated by the need to develop a practical tool for predicting the interface shape in
strati®ed ¯ow of a general two-¯uid system. A con®guration of a curved interface is considered.

A two-¯uid model is used to solve the momentum equations for a variable interface curvature. Energy
considerations provide a closure relation for the interface curvature. The analysis identi®es all the input
dimensionless parameters which determine the solution for the strati®ed ¯ow pattern. When these are
given, a complete solution of the problem is obtained, including the interface shape, in situ hold-up and
pressure drop.

The validity of the two-¯uid model is evaluated by comparing its prediction with available
experimental data and with the results of exact analytical solutions for laminar ¯ows with curved
interfaces.

Thus, the conventional two-¯uid model has been extended to tackle strati®ed ¯ow with curved
interfaces and various ¯ow regimes, in which case analytical solutions are complicated and restricted to
laminar ¯ows. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The strati®ed ¯ow attracts continuous research e�orts. It is considered a basic ¯ow
con®guration in horizontal and slightly inclined two-¯uid systems of a ®nite density
di�erential.
The feasibility of exact analytical solutions for strati®ed ¯ows is almost restricted to

laminar±laminar ¯ows which are of limited relevance to gas±liquid two phase ¯ows. However,
laminar ¯ow in both phases is frequently encountered in liquid±liquid systems, i.e. viscous oil±
water ¯ows. Indeed, several analytical studies for laminar±laminar ¯ow between parallel-plates
(Russell & Charles, 1959; Tang & Himmelblau, 1963) and numerical solutions for circular pipe
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geometry (Gemmell & Epstein, 1962; Charles & Redberger, 1962) were reported in literature.
Analytical solutions for strati®ed con®guration in circular geometry were attempted by
Bentwich (1964) and Yu & Sparrow (1967) and recently Brauner et al. (1995); Brauner et al.,
1996a,b). The latter provided analytical expressions in terms of Fourier integrals in the bipolar
coordinate system for the two-dimensional velocity pro®les and the distribution of shear
stresses over the tube wall and free interface. The interface was considered to be either ¯at or
curved. The interfacial curvature has been found to have a signi®cant e�ect on the local and
integral two-phase ¯ow characteristics (Moalem Maron et al., 1995; Brauner et al., 1997).
The prescription of the characteristic interface curvature is required in order to initiate the

solution of the ¯ow problem and the associated transport phenomena. The vast majority of
studies on strati®ed two-phase ¯ows assumed a plane interface between the phases. A
con®guration of a plane interface is appropriate for two phase systems which are dominated by
gravity, as in the case of large scale air±water systems under earth gravitation. In liquid±liquid
systems with small density di�erence or in reduced gravity systems (even with high density
di�erence), surface phenomena may dominate, in which case the interface is curved. Therefore,
for a general two-¯uid system, one should consider a curved interface as a basic con®guration.
In a recent study (Brauner et al., 1996b), energy considerations have been employed to

predict the interface con®guration. The e�ects of the ¯uid physical properties, in situ hold-up,
tube dimension, wall adhesion and gravitation on the characteristic interface curvature were
explored. The prediction of the interface curvature provides a closure relation required for a
complete solution of strati®ed ¯ows with curved interfaces. When combined with the solution
of the ¯ow equations (Brauner et al., 1996a), it provides the interface con®guration and the
corresponding local and integral ¯ow characteristics for a variety of laminar two-¯uid systems
(Brauner et al., 1995, 1997).
Due to the complex ¯ow geometry of the strati®ed con®guration in circular conduits, most

of the models for pipe ¯ow used the averaged two-¯uid formulation. For turbulent two-phase
¯ows or mixed ¯ow regimes in the two-phases, the one-dimensional modeling of strati®ed ¯ow
is considered to be the practical tool for analyzing the integral ¯ow characteristics, namely,
pressure drop and in situ hold-up. However, all two-¯uid models assumed a plane interface
between the strati®ed layers (e.g. Agrawal et al., 1973; Taitel & Dukler, 1976; Wang & Charles,
1981; Brauner & Moalem Maron, 1989; Hall & Hewitt, 1993) even when these were speci®cally
addressing the analysis of liquid±liquid systems. The interface curvature a�ects the ¯uids
contact area with the tube wall. Therefore it may have a crucial e�ect on the ¯ow pressure
drop, particularly when the viscosity ratio is high; for example, the performance of crude-oil/
water transportation lines (Russell & Charles, 1959; Charles, 1960; Charles & Redberger,
1962).
In this paper, a straightforward extension of the two-¯uid model for analyzing strati®ed ¯ow

with curved interfaces is presented. The solution of the hydrodynamic model is combined with
energy considerations to yield a complete solution for the interface con®guration and the
associated ¯ow characteristics for a variety of two-¯uid systems and under variable operational
conditions. The validity of the model and its practical signi®cance for analyzing strati®ed ¯ows
are evaluated in view of experimental data of the in situ ¯ow con®guration and the associated
pressure drop in an oil±water system, recently reported by Valle & Kvandal (1995). Finally, the
accuracy of the two-¯uid model is evaluated by comparing its predictions for laminar ¯ows
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with the results of the exact solution of the Navier±Stoke equations for laminar strati®ed ¯ows
with curved interfaces (Brauner et al., 1995).

2. Two-¯uid model for curved interfaces

Consider the strati®ed ¯ow of two immiscible ¯uids, a and b, in horizontal or slightly
inclined conduit. The ¯ow con®guration and coordinates are illustrated, as shown in Fig. 1.
Clearly the lighter ¯uid forms the upper layer. The free interface may attain a plane or curved
con®guration depending on the physical properties of the ¯uids, solid-¯uid wettability, the
geometrical dimensions and the ¯uids hold-up.
In general, when surface e�ects are signi®cant, the interface con®guration tends to attain a

convex or concave con®guration depending on the relative wettability properties of the two
¯uids with the wall surface. However, when gravity is dominant, the interface approaches a
plane con®guration.
Polar coordinate systems are utilized for the circular geometry under consideration. In Fig. 1,

f represents the view angle of the interface from an arbitrary point on the upper tube wall.
The view angle of the interface from a point located on the bottom wall is f0 + p. The curved
interface is represented by a circular segment centered at 01 and a view angle f*ÿ p. Note that
a convex interface corresponds to f* > p, while a concave interface corresponds to f* > p. In
particular, f* = p corresponds to the case of a plane interface with h/R= 1ÿ cos f0.
The two-phase domains are de®ned by:

Upper phase: f0<f<f
* �1a�

Lower phase: f*<f<f0 � p �1b�
The geometrical relationships for plane and curved interfaces, in terms of f0 and f*, are
summarized in Table 1.
It is worth noting that since f* is bounded in the range of f0Rf*Rf0+p, the maximal

interface curvature for f040 is bounded by p, while for f04p the minimal curvature is p and
its maximal value is 2p.

Fig. 1. Schematic description of two-phase strati®ed ¯ows with curved interfaces.
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Assuming a fully developed ¯ow, the integral forms of the momentum equations for the two
¯uids are:

ÿAa

�
dp

dz

�
ÿ taSa ÿ tiSi � raAag sin b � 0 �2a�

ÿAb

�
dp

dz

�
ÿ tbSb � tiSi � rbAbg sin b � 0 �2b�

Eliminating the pressure drop yields:

ta
Sa

Aa
ÿ tb

Sb

Ab
� tiSi

�
1

Aa
� 1

Ab

�
� �rb ÿ ra�g sin b � 0: �3�

Obviously, exact computation of the shear stresses is limited either to laminar ¯ows or simple
geometries, and yet is complicated. Thus, the more conventional way to evaluate the wall and
interfacial shear stresses is to adopt the Blasius equation, whereby wall and interfacial shear
stresses (ta, tb, ti) are expressed in terms of the phases velocity heads and appropriate friction
factors, fa, fb, fi:

ta � faraU
2
a=2; fa � Ca

�
DaUa

na

�ÿna
�4a�

tb � fbrbU
2
b=2; fb � Cb

�
DbUb

nb

�ÿnb
: �4b�

ti � fir
�Ua ÿUb�jUa ÿUbj

2
�4c�

Table 1
Geometrical relationships for curved and plane interfaces

Curved interface, f*$p Plane interface, f*=p

~A � A
D2 p/4 p/4

~Aa � Aa

D2
1
4

�
pÿ f0 � 1

2 sin�2f0� ÿ
ÿ sin f0

sin f*

�2�pÿ f* � 1
2 sin�2f*��	 1

4

�
pÿ f0 � 1

2 sin�2f0�
�

~Ab � Ab

D2
1
4

�
f0 ÿ 1

2 sin�2f0� ÿ sin2f0

sin2f*

�
f* ÿ pÿ 1

2 sin�2f*��	 1
4

�
f0 � 1

2 sin�2f0�
�

~Sa � Sa

D pÿ f0 pÿ f0

~Sb � Sb

D f0 f0

~Si � Si

D (pÿ f*) sin (f0)/sin(f
*) sin (f0)

~Ua � Ua

Uas
p=
�
pÿ f0 � 1

2 sin�2f0� ÿ
ÿ sin f0�
sin f*

�2�pÿ f* � 1
2 sin�2f*��	 p=

�
pÿ f0 � 1

2 sin�2f0�
�

~Ub � Ub

Ubs
p=
�
f0 ÿ 1

2 sin�2f0� �
ÿ sin f0

sin f*

�2�pÿ f* � 1
2 sin�2f*��	 p=

�
f0 ÿ 1

2 sin�2f0�
�
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The Blasius type friction factor correlations, although originally derived for single phase pipe

¯ow, have been widely used in two-phase ¯ow models to represent the average wall and

interfacial shear stresses in plane strati®ed ¯ows (zero interfacial curvature) and annular ¯ows

(curved free interface). Their applicability to model strati®ed ¯ow with curved (or plane)

interfaces is assessed in Section 6, where the results of the two-¯uid model for laminar ¯ows

are compared with the exact solutions.

In Eqs. (4a)±(c) the Reynolds numbers for the two ¯uids are based on the equivalent

hydraulic diameters, which are de®ned according to the relative velocity of the phases:

Da � 4Aa

�Sa � Si � ; Db � 4Ab

Sb
; r � ra and fi � fa for Ua > Ub �5a�

Da � 4Aa

Sa
; Db � 4Ab

�Sb � Si � ; r � rb and fi � fb forUb > Ua: �5b�

Da � 4Aa

Sa
; Db � 4Ab

Sb
; ti ' 0 for Ua ' Ub: �5c�

Note that in horizontal gas±liquid ¯ows, the gas velocity is of a higher order of magnitude and

therefore the interface is considered as a free surface with respect to the liquid and as a

stationary surface with respect to the fast gas phase (e.g. Agrawal et al., 1973). In liquid±liquid

systems, the velocites of the two phases are usually of comparable levels with one phase

velocity exceeding the other, depending on the ¯uids properties, system inclination and

operational conditions. Therefore, an adjustable de®nition of the equivalent hydraulic diameters

Da, Db ought to be adopted as part of the solution procedure (Brauner & Moalem Maron,

1989). The constants Ca, Cb, na, nb in Eqs. (4a)±(b) are chosen according to the ¯ow regime in

each phase. (C = 16, n = 1 for laminar ¯ow and C = 0.046, n = 0.2 for turbulent ¯ow.)

Clearly, the two phases in strati®ed ¯ow may result in laminar±laminar (L±L), laminar±

turbulent (L±T), turbulent±laminar (T±L), or turbulent±turbulent (T±T) regimes.

Introducing non-dimensional variables (designated by a tilde (~), as de®ned in Table 1), and

substituting Eqs. (4a)±(c) and Eqs. (5a)±(c) into Eq. (3), yields the following normalized forms

of Eq. (3):

� ~Da
~Ua�ÿna ~U2

a

� ~Sa

~Aa

�
�
1ÿ 1

~Q

~Ub

~Ua

�2

~Si

�
1

~Aa

� 1

~Ab

��
ÿ w2

�
� ~Db

~Ub�ÿnb ~U2

b

~Sb

~Ab

�
� 4Y � 0; ~Q ~Ua= ~Ub > 1; �6a�

~U
2

a

�
� ~Da

~Ua�ÿna
~Sa

~Aa

ÿ w2 ~Q
2� ~Db

~Ub�ÿnb
�
1ÿ 1

~Q

~Ub

~Ua

�2

~Si

�
1

~Aa

� 1

~Ab

��
ÿ w2

�
� ~Db

~Ub�ÿnb ~U2

b

~Sb

~Ab

�
� 4Y � 0; ~Q ~Ua= ~Ub<1; �6b�
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w2� ~Db
~Ub�ÿnb ~U2

b

~Sb

~Ab

ÿ � ~Da
~Ua�ÿna ~U2

a

~Sa

~Aa

ÿ 4Y � 0; ~Q ~Ua= ~Ub ' 1 �6c�

The two-phase ¯ow parameters w2, Y and QÄ evolve through the normalization of Eq. (3) and
are given by:

w2 � 4Cb=D�UbsD=nb�ÿnbrbU2
bs=2

4Ca=D�UasD=na�ÿnaraUas=2
� �dp=dz�bs�dp=dz�as

�7a�

Y � �rb ÿ ra�g sin b
4Ca=D�UasD=na�ÿnaraU2

as=2
� �rb ÿ ra�g sin b

�dp=dz�as
�7b�

~Q � Qa

Qb
� Uas

Ubs
�7c�

As shown in Table 1, the various geometric parameters and the non-dimensional velocities UÄ a,
UÄ b are all functions of the phases distribution angle over the tube wall, f0 and the interface
curvature f*. Hence, given the ¯ow regime in the two-layers (Ca,b and na,b are prescribed), the
general relation stated by Eqs. (6a)±(c) is:

f�w2, ~Q, Y, f*, f0� � 0 �8�
The Martinelli parameter w2 incorporates the ¯uids physical properties ~m=ma/mb, ~r=ra/rb.
In particular, for horizontal laminar (L±L) ¯ows, Y = O, w2 = ( ~mQÄ )ÿ1, the solution of
Eqs. (6a)±(c) yields:

f0 � f0� ~Q, ~m, f*�; L�a� ÿ L�b�, �9a�
while for horizontal turbulent (T±T) ¯ows the solutions of Eqs. (6a)±(c) is also dependent on
¯uids density ratio, whereby:

f0 � f0� ~Q, ~m, ~r,f*�; T�a� ÿ T�b� �9b�
For mixed ¯ow regime in the two layers, the relationships which evolve from Eqs. (6a)±(c) with
the corresponding expression for w2 (Eq. (7a)) are:

or
f0 � f0�~Q, Rebs, ~m, f*�
f0 � f0�~Q, Reas, ~m,~r, f*�

�
L�a� ÿ T�b� �10a�

or
f0 � f0�~Q, Reas, ~m, f*�
f0 � f0�~Q, Rebs, ~m,~r, f*�

�
L�b� ÿ T�a� �10b�

Given a two-¯uid system ( ~m, ~r), the solutions de®ned by Eqs. (9a)±(b) can be represented by
`¯ow monograms' as in Fig. 2. Each point along a curve of a speci®ed QÄ represents a possible
combination of (f*, f0). The values of both are required for determining the in situ ¯ow
con®guration. Once the interface curvature is prescribed (as in the case of plane interface), the
phases distribution angle f0 for speci®c operational conditions (QÄ ) can be extracted from the
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corresponding ¯ow monogram for either laminar ¯ows (Fig. 2a) or turbulent ¯ows (Fig. 2b).
Note that in view of Eq. (9a), the ¯ow monograms for laminar ¯ows are independent of the
¯uids density ratio. Both for laminar and turbulent two-phase ¯ows, the ¯ow monograms of a
two-¯uid system (speci®ed ~r and ~m) are uniquely determined by the ¯uids ¯ow rate ratio QÄ .
For mixed ¯ow regimes, (either laminar(a)±turbulent(b) or turbulent(a)±laminar(b)) more
detailed information is required. In view of Eqs. (10a)±(b) both Qa and Qb should be speci®ed
for constructing the corresponding ¯ow monogram. This detailed information is also needed
for constructing the ¯ow monograms for inclined systems, Y$O with all possible
combinations of phases ¯ow regimes.
In order to follow the e�ects of laminar/turbulent ¯ow regime transitions on the ¯ow

monogram, it is useful to refer to particular ¯ow rates ratio which results in simultaneous L±T
transition in both phases (when increasing ¯ow rates while maintaining QÄ ). This may happen
when Reas2Rebs, or QÄ=QÄIP= ~m= ~r=~n (=24 for the two ¯uids in Fig. 2), in which case the
Martinelli parameter remains invariant with ¯ow regime transition, w2IP= ~r= ~m2. Along
QÄ<<QÄIP,(w

2)T±T>(w2)L±L, when both phases ¯ow rates is increased, the lower phase becomes
turbulent ®rst, in which case the laminar turbulent transition is associated with an increase of
the lower phase hold-up. Hence, using QÄ<<QÄIP and a particular f*,(f0)T±T>(f0)L±L. This
trend is indicated in Fig. 2, by comparing the corresponding ¯ow curves for L±L and T±T
regimes obtained for QÄ<<QÄIP=24. This is vice versa for QÄ >> QÄIP. Then, (w

2)T±T<(w2)L±L and
therefore (f0)T±T<(f0)L±L. The e�ects of the ¯ow regime on the characteristics of the solutions

Fig. 2. Flow monograms: e�ect of phases ¯ow rates. (a) laminar±laminar ¯ow; (b) turbulent±turbulent ¯ow.
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obtained via the two-¯uid model for plane interface (f* = p) were detailed in Brauner &

Moalem Maron (1989).

It is to be noted that the literature for gas±liquid systems, following the Lockhart and

Martinelli approach, emphasizes the role of w2 as the sole parameter. In the case of horizontal

gas±liquid ¯ows, when the gas velocity is characteristically much greater than the liquid phase

velocity, the two-liquid model equations are reduced to a single parameter equation and the in

situ hold-up and pressure drop are determined by the Martinelli parameter. However, in

general two-¯uid systems (in particular liquid±liquid systems), the velocities of the two-phases

may be of comparable levels, and therefore the ¯ow characteristics of two-¯uid systems are

dependent on the two parameters, w2 and QÄ . In L±L ¯ows, the equivalent two-parameters are

the viscosities ratio and the ¯ow rates ratio. Therefore, the L±L ¯ow monograms (Fig. 2a) can,

in principle, be arranged in terms of ~mQÄ , in which form the range of a single parameter

solution appears. The range of validity of single-parameter solutions was studied by Brauner et

al. (1995); Brauner et al., 1996a) with regard to the exact solutions of the 2-D laminar ¯ow

equations. It was concluded that for two-¯uid systems of comparable viscosities, both

parameters ~m and QÄ are required. However, in the extreme of ~m>100 or ~m<0.01, L±L ¯ow

monograms of various QÄ follow a uniform curve of f* vs. f0, provided they correspond to the

same speci®ed Martinelli parameter. For instance, a L±L ¯ow monogram obtained for ~m=0.01

is practically valid for any ~mR0.01 when curves of constant QÄ are considered in terms of the

corresponding ~mQÄ . Similarly, the results for ~m>>1 can be extracted from those obtained for

~m=100.

Having obtained a solution for f0 at a particular f* from the ¯ow monogram, the in situ

¯ow con®guration is determined from the geometrical relationships in Table 1. The system

pressure drop is obtained by eliminating ti using Eqs. (1a)±(b). In a dimensionless form:

d ~Pa

dZ
� dp=dz

�dp=dz�as
� 1

4
w2U2

b� ~DbUb�ÿnb
~Sb

� ~Ab � ~Aa�
� 1

4
� ~DaUa�ÿnaU2

a

~Sa

� ~Ab � ~Aa�
ÿ ~rY �11a�

or

d ~Pb

dZ
� dp=dz

�dp=dz�bs
� �d

~Pa=dz�
w2

�11b�

where:

~r � ra ~Aa � rb ~Ab

� ~Aa � ~Ab��rb ÿ ra�
: �11c�

Thus, it is clear that in order to de®ne the ¯ow geometry and proceed in solving the ¯ow

problem for a particular two-phase system and operational conditions, the interface curvature

ought to be prescribed.
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3. Prediction of the interface curvature

The characteristic curvature of the two ¯uids interface can be predicted by employing energy
considerations.
In a recent study (Brauner et al., 1996b), the variation of the potential energy, DEp and

surface energies DEs associated with changing the interface curvature, have been explored. It
was shown that the interface curvature corresponds to the minimum of the total system energy.
The procedure for constructing the `interface monogram', which yields the interface curvature
as a function of f0, is brie¯y outlined below.
Taking the con®guration of plane interface as a reference, the curving of the interface to

either concave or convex shape is associated with an elevation of the system center of gravity,
thereby increasing the potential energy. It also results in a change of the phases contact area
with the tube wall and the phases interfacial area, resulting in a change of the system surface
energies.
For an inclined conduit the change in the total system energy, DE (per tube length L)

associated with the process of curving the interface from its otherwise planar shape, is given by
Brauner et al. (1996b):

D ~E

L
� DE
�R3L�rb ÿ ra�g cos b� �

1

L
�D ~Ep � D ~Es�

�
�
sin3f0

sin2f*
�ctgf* ÿ ctgf0�

�
pÿ f*� 1

2
sin�2f*�

�
� 2

3
sin3fP

0

�

� Ev

�
sinf0

pÿ f*

sinf*
ÿ sinfP

0 � cos a�fP
0 ÿ f0�

�
�12a�

where a is the phases wettability angle with the wall and Ev is the EoÈ tvoÈ s number,

Ev � 2sab
�rb ÿ ra�g cos b R2

�12b�

Given an in situ hold-up, AÄa (or AÄb) the geometrical relationships (Table 1) yield the
corresponding f0 for either plane con®guration (fP

0=f0(f
*=p)) or for a curved interface with

any speci®ed f*. Hence, Eqs. (12a)±(b) with Table 1 yields the change in the total system
energy associated with curving the interface to the speci®ed f*, D EÄ(f*). The ultimate interface
con®guration is obtained at the particular curvature, f*

m, for which the system total energy is
at its minimum. Thus, by minimizing Eqs. (12a)±(b) the steady interface curvature can be
predicted for a variety of two-¯uid systems of a given density di�erence, surface tension,
gravity conditions and tube diameter. These are all embodied in the single non-dimensional
EoÈ tvoÈ s number, Ev, and in terms of the relative wettability of the phases with the tube wall, as
represented by cos a. The so-obtained `optimal' interface curvature is used to construct the
interface monograms shown in Figs. 3 and 4, which yield the characteristic interface curvature
as a function of the phases distribution angle f0 for various EoÈ tvoÈ s numbers and phases
relative wettability.
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Inspection of the interface monograms in Figs. 3 and 4 shows that in gravity dominated
systems, Ev40, the interface stabilizes at a planar con®guration, f*

m4p over a wide range of
f0. It is to be noted that for Ev00 (no surface e�ects) a plane interface con®guration
corresponds to the minimal of the system (potential) energy, irrespective of the phases hold-up
(or fo). However, for small ®nite Ev numbers and low hold-up of the non-wetting phase, the
interface curvature deviates from f*=p (the non-wetting phase tends to form a `bubble'). As
surface tension e�ects increase, a curved interface with either concave (f�m>p) or convex
(f*

m<p) shape is obtained for a wider range of in situ hold-up.
The other extreme, corresponding to two-phase systems dominated by surface e�ects, Ev>>1,

is shown in Fig. 4(f). For high EoÈ tvoÈ s number, the solution for the steady interface curvature
follows a straight line:

Fig. 3. Interface monograms: e�ect of EoÈ tvoÈ s number for two-phase systems with various wettability angle.
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f*
m � �180� ÿ a� � f0 �13�

Thus, when Ev>>1 and a = 0 (ideal wettability of the lower phase), the solution for f*
m

coincides with the upper bound of the solution domain (see Eq. (1b)) and for a = 1808 (ideal
wettability of the upper phase) f*

m follows the lower bound of the solution domain (see
Eq. (1a)). In both cases, the interface con®guration corresponds to a fully eccentric bubble of
the non-wetting phase, irrespective of the phase hold-up. However, for Ev>>1, with 0 < a < p
(none of the phases ideally wets the wall), the interface con®guration depends both on a and
f0 (or the hold-up).
It is to be emphasized that although intuition may lead one to believe that a curved interface

is typical only to small diameter (capillary) tubes, the analysis indicates that diameter e�ect is

Fig. 4. Interface monograms: e�ect of wall adhesion for various EoÈ tvoÈ s numbers.
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embodied in the nondimensional EoÈ tvoÈ s number. Therefore, large scale systems with two ¯uids
of low density di�erential, will have the same characteristic interface curvature as capillary
systems of high density di�erential (with identical Ev and a).
In a two-phase ¯ow system, the phases in situ hold-up is determined by the solution of the

¯ow problem. This form of interface monograms, as presented in Figs. 3 and 4, can be
conveniently combined with the solution of the ¯ow problem to yield both the interface
con®guration and the two phase ¯ow characteristics.

4. Construction of the system `operational monogram'

The prediction of the interface curvature f* ought to be an integral part of the complete
strati®ed ¯ow solution. The basic input required for solving a strati®ed ¯ow problem includes
the two ¯uids properties (densities, viscosties and surface tension), the ¯ow rates, tube diameter
and inclination and the wall/¯uids relative wettability. This information is used to calculate the
relevant non-dimensional parameters needed to construct the system `interface monogram' (in
terms of Ev number and wettability angle a) and the system `¯ow monogram'. As discussed in
Section 2, the number of non-dimensional parameters which de®ne the ¯ow monogram
(obtained via the solution of the hydrodynamic model) depends on the ¯ow regime in both
phases and on whether a horizontal or an inclined system is considered.
The combination of the system interface monogram with the system `¯ow monogram' yields

the system `operational monogram'. The construction of the `operational monogram' is
demonstrated in Fig. 5a for horizontal laminar±laminar ¯ows and in Fig. 5b for turbulent±
turbulent ¯ows. Each intersection point of a ¯ow curve with an interface curve on the
operational monogram yields both f* and f0 for the particular two-phase system (working
¯uids, tube material and geometry) at the speci®ed operational conditions (¯ow rates). The
dashed line in Fig. 5 represents the solution fP

0 obtained when imposing the assumption of a
plane interface, which is a valid solution for systems with Ev00. The discrepancy between the
solution obtained for f0 and fP

0 indicates the di�erent ¯ow con®guration predicted for systems
of non-vanishing EoÈ tvoÈ s numbers. For Ev=0.1 and ideal wettability of the lower-phase, a= 0,
the discrepancy between (f*, f0) and (p, fP

0 ) is already signi®cant for high QÄ=Qa/Qb ratios
and becomes more and more dramatic for lower QÄ ratios. Another noteworthy point
demonstrated in Fig. 5a and Fig. 5b is that for a given physical system a wide range of
interfacial curvatures may result with varying the phases input ¯ow rates ratio. Comparison of
Fig. 5a and Fig. 5b shows that for QÄ<QÄIP; (=2.85) and a = 0, the transition from laminar to
turbulent two-phase ¯ow is associated with a tendency of the interface to form a more concave
shape with an increased contact area between the wetting phase and the tube wall (both f0 and
f* increase). Note that typical oil±water laboratory systems, with Dr= rbÿra20.160.2 gr/
cm3, D= 1/2ÿ 20 and sab=25640 dyne/cm, correspond to Ev20.562. However, systems of
lower density di�erential and much higher Ev numbers are common in liquid±liquid systems,
vapor±liquid systems operating near the critical point or reduced gravity systems. Obviously,
with the increasing Ev number, the deviation of the solution obtained for the in situ ¯ow
con®guration (f*, f0) from the solution obtained with a plane interface (p, fP

0 ) increases.
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Fig. 6a shows for Ev>>1 and ideal wettability of either of the phases a = 0, or a = 1808), the
only solution for the in situ con®guration is a fully eccentric `bubble' of the non-wetting phase.
When a= 0, the lighter non-wetting phase forms a `bubble' touching the upper tube wall
(f0

*=3608, f0=1808), while for a = 1808 the heavier non-wetting phase forms a `bubble'
touching the tube bottom. These are the only solutions obtained for the problem; irrespective
of the phases ¯ow rates, ¯ow regime or ¯uids viscosities. However, for partial wettability,
0 < a < 1808, the ¯ow con®guration does not necessarily correspond to the bubbly ¯ow,
even in the limit of Ev41. The wall/phases adhesion properties may a�ect strati®cation of
the ¯ow, whereby the interface shape (convex or concave) and the resulting contact areas of
the phases with the tube wall depends on the wettability angle, ¯ow rates and ¯uids
properties.
The e�ect of the ¯uids viscosity in laminar ¯ows is demonstrated in Fig. 6b indicating a

variability of the characteristic interfacial curvature due to this ¯uid property. For a ®nite

Fig. 5. Operational Monograms: e�ect of phases ¯ow rates and ¯ow regime.
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EoÈ tvoÈ s number, the interfacial curvature decreases as the viscosity of the non-wetting phase
increases. For a = 0, the interface is less concave and the contact area of the lubricating
wetting phase with the wall decreases as ~m increases, whereas for a = 1808 the interface
becomes more convex for higher ~m. For turbulent ¯ows, the e�ect of the viscosity ratio on
the ¯ow monogram (hence, on the interface shape) is much less pronounced.
In laminar ¯ows, the ¯ow monograms are independent of the ¯uids densities while the

solution of the ¯ow problem is a�ected by the phases density di�erential only through its e�ect
on the interface monogram. This implies that the e�ect of reduced gravity ®eld on the interface
con®guration in laminar ¯ows can be simulated by studying liquid±liquid systems of reduced
density di�erential under earth gravitation. In turbulent ¯ows, however, both the ¯ow
monogram and the interface monogram vary with ~r.
Fig. 6c shows that the variation of the ¯ow monogram with the ¯uids' densities in T±T ¯ows

moderates the changes in the interface con®guration a�ected by the variation of the interface
monogram. For constant EoÈ tvoÈ s number (and a= 0) the interface curvature increases with a
reduction in ~r. Obviously, a constant Ev requires that the reduction of ~r is accompanied by a
corresponding reduction of either the tube size or gravity ®eld.
Finally, the e�ect of the tube inclination on the interface con®guration is demonstrated in

Fig. 6d for the oil±water system studied by Russel et al. (1959). In constructing the ¯ow
monograms, the ¯ow regime in each phase was determined according to the operational
conditions resulting in turbulent water with either laminar or turbulent oil. It is shown that for
ideal wettability of water, a = 0 surface e�ects become more pronounced, whereby the

Fig. 6. E�ects of various system parameters on the operational monogram.
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interface is more concave with inclining the tube upwards. However, when the oil is the wetting
phase (a = 1808), the interface attains a more convex shape (f* decreases) for downward
inclinations.
Having obtained the interface con®guration (both f0 and f*) from the system operational

monogram (e.g. Figs. 5 and 6), all other ¯ow characteristics can be obtained via the
geometrical relationships in Table 1 and the solution of the ¯ow problem as detailed in Section 2.

5. Comparison with experimental data

The signi®cance of considering the interfacial curvature, while modeling strati®ed ¯ows of
liquid±liquid systems, is demonstrated by referring to experimental data reported by Valle &
Kvandal (1995). They used oil (Exxol D80) and water (with 1% NaCl) in a horizontal glass
pipe of 37.5 mm ID. The EoÈ tvoÈ s number for this system is Ev=0.1 and for ideal wettability of
the glass tube by the water phase, a = 0. The pressure drop as well as the phases in situ
distribution were measured. The in situ phases distribution was characterized by measuring the
extent of water climbing along the tube wall, Hf and the oil±water distribution along the tube
meridian (see schematic description in Fig. 7, reproduced from Valle & Kvandal, 1995). In the
framework of the two-¯uid model presented in Section 2, Hf is given by:

~Hf � Hf

D
� 0:5�1ÿ cos f0� �14a�

The experimental value of H50 has been identi®ed as the location of the oil/water interface
along the meridian, which is then given by:

~H50 � H50

D
� 0:5

�
1ÿ cosf0 � sin f0 ctg

�
f*

2

��
�14b�

The predicted in situ ¯ow con®guration as a function of oil and water ¯ow rates ratio is given
in Fig. 8. The ®gure has been constructed based on the laminar±laminar and turbulent±
turbulent operational monograms of this particular two-¯uid system. Given the input ¯ow

Fig. 7. De®nition of the terminology used in Valle and Kvandal (1995) experiments.
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rates, the interface shape is determined by the corresponding f0 (Fig. 8a) and f* (Fig. 8b).
Both f0 and f* vary moderately with laminar/turbulent ¯ow regime transition.
It is to be noted that the range of operational conditions reported by Valle & Kvandal

(1995) (oil: Uas=0.2561.05 m/s, water: Ubs=0.261.1 m/s and Uas+UbsR1.8 m/s) correspond
to turbulent ¯ow in both phases. The relative phases velocities can be judged in view of Fig. 9.
This ®gure shows the combinations of oil±water ¯ow rates ratio and interfacial curvature,
which result in a constant ratio of the in situ phases velocities. In the range of the reported
experimental data (0.2 < Uas/Ubs<50 and f*>1808 in view of Fig. 8b) the phases velocities
are of comparable levels (0.5 < Ua/Ub<2). Therefore, the interfacial shear stress is modeled
based on Eq. (5c). However, it is to be noted, that because of the relatively small velocity gap
between the two phases, the particular model used for the interfacial friction factor has a
minor e�ect on the predicted ¯ow characteristics.
The solution obtained for f0 and f* for T±T ¯ow (Fig. 8) determines the ¯ow con®guration

for speci®ed operational conditions. This solution is used to calculate the corresponding values
of ~Hf and ~H50, which are compared with the experimental data in Fig. 10. The ®gure indicates
that the model correctly predicts the location of the oil±water interface, as implied by the
measurements of ~Hf and ~H50 and follows the observed e�ects of water and oil ¯ow rates on
the ¯ow con®guration. The interface curvature rises by increasing the water ¯ow rate and/or
reducing the oil ¯ow rate, whereby a larger portion of the tube wall is lubricated by the water

Fig. 8. Predicted interfacial structure: e�ect of phases ¯ow rates and ¯ow regime for ideal wettability of the water

phase, a= 0.
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and the ¯ow gradually approaches a fully eccentric core-annular con®guration. The greatest
discrepancies of the model are at low oil ¯ow rates and high water rates (UasR25 m/s,
Ubsr1 m/s), where the experiments indicate an evolution of eccentric annular ¯owÐthe water
wets the entire tube surface with a large amount of water drops entrained in the oil phase and
oil bubbles entrained in the water phase.
For comparison, the solution obtained for the water layer thickness assuming a planar

interface ~Hp is also indicated in Fig. 10(a) and Fig. 10(b). For plane interface ~Hp= ~Hf= ~H50,
and in view of Fig. 10, it is evident that a model of plane strati®ed ¯ow fails to describe the
¯ow con®guration. The apparent reasonable agreement between the water-layer thickness Hp

and the experimental values of H50 results from the mild sensitivity of the calculated value of
~H50 (Eq. (14b)) to variation of the interface curvature; For speci®ed ¯ow rates, the decrease of
~H50 with curving the water interface into a more concave shape is moderated, and sometimes
even overruled by the associated increase of in situ water hold-up predicted for higher f*.
Consequently, the minimal value of ~H50 does not necessarily correspond to a fully eccentric
core-annular con®guration.
A comparison between the predicted pressure drop (associated with the predicted interface

con®guration) and the experimental data is shown in Fig. 11. In order to evaluate the e�ect of
water lubrication, the pressure drop predicted via a plane interface model (f*=1808) and that
for a fully eccentric core con®guration (f*=3608) are also shown. For low oil ¯ow rates and
high water rates (Fig. 11a) the experimental pressure drop is not signi®cantly di�erent from
that predicted with a plane interface, although the tube wall is shielded by a water ®lm
(Fig. 10(a)). The loss of water lubrication e�ect at low oil-¯ow rates is predicted by the model.
However, a signi®cant lubrication e�ect is noticed for high oil rates and low water rates. When
relatively small amounts of water are introduced into an oil system, the potential for pressure

Fig. 9. Input ¯ow rates ratio corresponding to constant ratio of the phases in situ velocities vs. the interfacial
curvature (T±T ¯ow, ~m=2.25, ~r=0.792).
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drop reduction increases with changing of the interface con®guration. A water lubrication
e�ect can be achieved even when the water does not completely wet the tube wall. For
instance, the interface con®guration which yields a pressure drop matching the experimental
data in Fig. 11(d), is depicted in Fig. 10(d) (dotted curves). Hence, water lubrication can be the
cause of pressure drop reduction even in turbulent ¯ows of two ¯uids of relatively low viscosity
ratio.
Another possible mechanism for pressure drop reduction in turbulent two-phase ¯ows,

mentioned by Valle & Kvandal (1995), is the modi®cation of the turbulent ®eld due to the
dynamics of droplets (bubbles) in unstable emulsions. This mechanism was suggested by Pal

Fig. 10. Structure of oil±water interfaceÐcomparison of the model results with Valle and Kvandal (1995)
experimental data.
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(1993) to explain evidences of drag reduction in turbulent emulsions. It was substantiated by
his experimental study, which indicated that the ¯ow of surfactant-stabilized emulsion results
in higher pressure drop in comparison to the otherwise unstable emulsion. It is, however, not
clear to what extent the interference with turbulence in the near wall region is a valid
mechanism for drag reduction by the relatively large drops observed in the strati®ed
dispersed regime. This mechanism is attributed to the small drops (1610 mm) which are
encountered in emulsi®ed oil±water systems. Valle and Kvandal data does not show
consistent trends of increased drag reduction with increased entrainment. In particular,
intensive entrainment of water drops into the oil phase at low oil-to-water ¯ow rates ratio
does not a�ect a pressure drop reduction. However, the loss of water lubrication under these

Fig. 11. Pressure drop in oil±water system±comparison of the model results with Valle and Kvandal (1995)
experimental data.
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operational conditions is in accordance with the prediction of the curved interface two-¯uid
model.
It is to be noted that the interfacial structure predicted in Fig. 8 corresponds to ideal

wettability of the glass surface by water (a = 0). It is expected that other pipe materials with
higher wettability angle, will a�ect the interfacial structure and reduce the potential for water
lubrication. For example, the interfacial structure which is obtained from the `operational
monogram' of the same oil±water system of Fig. 8, but with ideal wettability of the oil phase
(a = 1808), is shown in Fig. 12. The interfacial curvature is always less than 1808. Hence, the
wall surface covered by water is always less than the calculation based on a model of strati®ed
¯ow with a plane interface. However, the predicted pressure drop corresponding to the
interfacial structure of Fig. 12 (not shown) is practically identical to that obtained for strati®ed
¯ow with a plane interface.

6. Comparison of the two-¯uid model with exact solutions

Analytical solutions for laminar strati®ed two-phase ¯ow in pipes with a variable interfacial
curvature have recently been presented by Brauner et al. (1995); Brauner et al., 1996b). The 2-
D Navier±Stokes equations for the two-phases have been solved in the bipolar coordinates
system (f, x). The solution obtained for the velocity pro®les is in the form of Fourier integrals:

~ua�f; x� � ua
UR
� 2 sin f0

�
sin�fÿ f0�

cosh xÿ cos f
� 2�1ÿ ~m� sin�f

* ÿ f0�
sin�f*�

�1
0

Wav�o ,f�cos�ox�do
�
;

f0<f<f
*; 1RxR1 �15a�

~ub�f; x� � ub
UR
� 2 ~m sin f0

�
sin�fÿ f0�

cosh xÿ cos f
� 2�1ÿ ~m� sin�f

* ÿ f0�
sin�f*�

�1
0

Wbv�o ,f�cos�ox�do
�
;

f*<f<f0 � p; ÿ1RxR1 �15b�
where:

UR � ÿD
2

16ma

@p

@z
�15c�

and the spectral functions are given by:

Wav�o ,f� � sinh�o�f* ÿ p��
c�o�sinh�po�

sinh�o�fÿ f0��
cosh�o�f* ÿ f0��

�16a�

Wbv�o ,f� � sinh�o�f* ÿ p��
c�o�sinh�po�

sinh�o�fÿ pÿ f0��
cosh�o�f* ÿ pÿ f0��

�16b�
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where

c�o� � tanh�o�f* ÿ f0�� � ~m tanh�o�p� f0 ÿ f*�� �16c�
Based on this solution, the velocity pro®les, the distribution of wall and interfacial shear stress,
pressure drop and in situ hold-up have been calculated for concave or convex interfaces
ranging from an almost fully eccentric core of the lower phase (f0, f

*40) to an almost fully
eccentric core of the upper phase (f*42 p, f04p).
Integration of the velocity pro®les ~ua, ~ub over the corresponding phases ¯ow domains yields

¯ow monograms of the form of Eq. (9a); namely a relation between f0 and f* for a speci®c
¯ow rates ratio ~Q and viscosity ratio ~m. For each particular point along the ¯ow monogram
(f0,f

*), an exact solution for the dimensionless system pressure drop (corresponding to
Eqs. (11a)±(c)) and in situ hold-up are also obtained.
Solutions for fully-eccentric core annular con®gurations cannot be obtained in the bipolar-

coordinate system, since in this coordinate system ¯ow domain of the annular phase
degenerates to a line (either f= 0 or f= 2p). A special `unipolar' coordinate system has

Fig. 12. Predicted interfacial structureÐe�ect of phases ¯ow rates and ¯ow regime for ideal wettability of the oil
phase (~a=1808).
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recently been used by Rovinsky et al. (1997) for solving the problem of fully eccentric core

¯ows. The solutions for the velocity pro®les in the core phase and annular phase, ~uc and ~ua
respectively, were also obtained in the form of Fourier integrals:

~ua�x1,x2� �
ua
UR
� 4

x21 � x22
�
�1
0

Wa�o ,x2�cos�ox2�dw; 1Rx1Rxc; jx2j<1 �17a�

~uc�x1,x2� �
uc
UR
� 4 ~m

x21 � x22
�
�1
0

Wc�o ,x2�cos�ox2�dw; xcRx1R1; jx2j<1 �17b�

where:

~m � ma=mc; xc � D=Dc �18a�

UR � ÿD
2

16ma

@p

@Z
�18b�

and the spectral functions Wa, Wc are given by:

Wa�o ,x1� � ÿ
4

xc

��1ÿ ~m�e2�1ÿxc�o ÿ �1� ~m�xc� � �1ÿ ~m��xc ÿ 1�e2o �x1ÿxc�
�1ÿ ~m�e2�1ÿxc�o ÿ �1� ~m� eÿox1 �19a�

Wc�o ,x1� �
4 ~m
xc

�2xc � ~mÿ 1ÿ �1ÿ ~m�e2�1ÿxc�o �
��1ÿ ~m�e2o �1ÿxc� ÿ �1� ~m�� eÿox1 �19b�

Note that in Eqs. (17a)±(b), (18a)±(b) and (19a)±(b), subscript a denotes the annular phase.

Integration of the velocity pro®les over the corresponding core and annular ¯ow domains

yields a relation between the dimensionless core diameter (Dc/D) ¯uids ¯ow rates ratio ~Q=Qa/

Qc and viscosity ratio, ~m=ma/mc (Rovinsky et al., 1997).

The above exact solutions can be used to validate the two-¯uid model. Fig. 13±15

demonstrate a comparison between the characteristics of laminar ¯ow with curved interface as

predicted via the two-¯uid model with the corresponding results of the exact solutions for

~m=8. On each of the ®gures, the two-¯uid model is represented by two curvesÐthe SW curve

represents the results obtained when the phases interface is considered as a solid wall with

respect to faster phase. Hence Eq. (5a) or Eq. (5b) is used for modelling the interfacial shear.

The FS curve represents the corresponding results when the interfacial shear is modeled

assuming a free interface with respect to both phases, whereby Eq. (5c) applies.

Fig. 13 shows the variation of the dimensionless two-phase pressure drop with the interfacial

curvature for various ¯uids ¯ow rates ratio. The variation of the in situ hold-up is shown in

Fig. 14 and the corresponding ratio of the average in situ phases velocities is shown in Fig. 15.

Examination of these ®gures shows that when Ua#Ub (either Ua/Ub>>1 or Ua/Ub<<1 in Fig. 15)

the predictions of the SW two-¯uid model are in reasonable agreement with the results of the

exact solutions over a wide range of operational conditions and interfacial curvatures

associated with Ua#Ub. Although the SW two-¯uid model tends to overpredict the pressure
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drop, it correctly predicts the in situ hold-up and the errors are most probably at an acceptable
level for practical applications.
It is to be noted that for certain ¯ow rates ratios there is a range of interfacial curvatures for

which the velocities of the two phases are comparable, Ua/Ub21 (Fig. 15). In this range the
SW two-¯uid model fails (no physical solution is reached) and the FS model must be applied
(see Fig. 13(a±d)). In this range, the FS model provides a reasonable prediction of the system
pressure drop and in situ hold-up. When the velocities of the two phases are of the same order
of magnitude 0.1 < Ua/Ub<10, the di�erence between the prediction of the FS and SW two-
¯uid models diminishes. It is to be noted that in the range of comparable velocities, when the

Fig. 13. Comparison of the results of the two-¯uid model with the exact solutionÐpressure drop.
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lower less viscous phase is the faster phase (0.1 < Ua/Ub<1), the FS model behaves better in
predicting the system pressure drop. When the upper viscous phase is faster (1 < Ua/Ub<10),
the exact solution is in the middle of the predictions of and the FS model and the SW model.
Figs. 13±15 can also be used for demonstrating the e�ect of the interfacial curvature on the

characteristics of laminar two-phase ¯ows. The pressure drop in Fig. 13 is normalized with
respect to the super®cial pressure drop of the viscous phase. From a practical point of view,
when the upper phase ¯ow rate is maintained at a constant value (and so (@p/@z)as) this
nondimensional pressure drop yields the factor of pressure drop reduction (or enhancement)
associated with introducing a second less viscous phase to the system. Indeed, Fig. 13

Fig. 14. Comparison of the results of the two-¯uid model with the exact solutionÐin situ hold-up.
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demonstrates that for ~m=8, a reduction of the system pressure drop can be achieved by adding
relatively small amounts of less viscous phase (Qa/Qb>1). The reduction is more signi®cant as
f* (and f0 as well) increases and the interface attains a concave shape, whereby the lower less
viscous phase spreads over an increasing portion of the tube wall. Note that for a plane
interface, f*=1808, the maximal achievable pressure drop reduction for this viscosity ratio is
limited to about 20%. By reducing Qa/Qb (increasing the ¯ow rate of the less viscous phase)
the two-phase pressure drop eventually increases and for Qa/Qb<00.3, an enhancement of the
pressure drop results independently of the interface con®guration. Fig. 14 shows that the in situ

Fig. 15. Comparison of the results of the two-¯uid model with the exact solutionÐrelative velocities of the two-

phases.
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hold-up of the less viscous phase increases by increasing the interface curvature, resulting in a
corresponding increase of the phases velocity ratio (Fig. 15).
The solutions for the fully eccentric core-annular con®guration at f0=0(f*=0) and

f0=p(f*=2p) are also marked in Figs. 13±15. One can observe that the exact solutions for
curved interfaces obtained in the bipolar coordinate system do not converge to the pressure
drop and in situ hold-up values obtained for the fully eccentric core-annular con®guration. The
characteristics of laminar strati®ed ¯ows when approaching the limit of fully eccentric core-
annular con®guraton have been discussed by Brauner et al. (1997); The solution in the bipolar
coordinate system yields a lower hold-up (and higher velocity) of the core phase, which results
in higher pressure drop compared to the values predicted by the solution obtained for a fully
eccentric core. This rather peculiar behavior in the extremes of (f*408 and f*43608) may
evolve from computational problems due to the limitations of the bipolar coordinate system
when approaching the limits of its applicability (Rovinsky et al., 1997). Nevertheless, these
trends in the solutions remain invariant with the system parameters ( ~m and ~Q) and the change
in the computational tolerances.
It is worth noting that the reasonable agreement between the prediction of the two-¯uid

model and the exact solution at the limit of a fully eccentric core, as implied by Fig. 15, may
be misleading. The results of the two-¯uid model, when applied to annular con®guration, are
invariant with respect to the core eccentricity. This is an obvious outcome of using closure laws
for the shear stresses which ignore the core position and are uniquely determined by the core
phase hold-up.
The e�ect of the core eccentricity on the pressure drop (and hold-up) has recently been

studied by Rovinsky et al. (1997) in view of the exact solution obtained for a fully eccentric
core ¯ow. It was shown that in viscous core ¯ow, mc/ma>1, the pressure drop in concentric
con®guration is always lower than that of an eccentric con®guration. But signi®cant e�ects of
the core eccentricity are limited to the lubrication region 0 < (maQa)/(mcQc) < 1 (where
pressure drop reduction is achieved by introducing a second less viscous phase). In the
lubrication region, the pressure drop factor with a concentric core is proportional to ma/mc and
for ma/mc40, d ~Pc/dZ4 0; whereas with a fully eccentric core, the minimal pressure drop factor
is still obtained for ma/mc40, but is bounded by 0.025. The maximal e�ect of core eccentricity
was shown to be in the range 0.1 < Qa/Qc<10, independent of the viscosity ratio (see Fig. 8 in
Rovinsky et al., 1997). It was also shown that the viscous core hold-up predicted for a
concentric core underestimates the hold-up of a core at a eccentric position. This is expected
since the proximity of the tube wall slows down the viscous core and a higher ¯ow area is
needed to transfer the core phase input ¯ow rate. In contrast to concentric annular ¯ows,
where the average velocity of the annular phase is always smaller than the average velocity of
the core phase (independent of the ¯uids viscosity ratio and ¯ow rates), in eccentric core ¯ows,
the annular phase velocity may exceed the core velocity. For ~m=ma/mc<<1 the annular phase is
the faster one (except for ~Q=Qa/Qc<<1, Fig. 7, Rovinsky et al., 1997). However, in the range
of operational conditions, which are relevant for viscous core lubrication, the e�ect of core
eccentricity on the in situ hold-up was found to be moderate.
In view of the limitations of the two-¯uid model in accounting for the core eccentricity, the

error in predicting the lubrication e�ect in the limit of f*43608 are scaled with the viscosity
ratio. For ma/mb=8 (used in Fig. 13), the two-¯uid model underpredicts the pressure drop. The
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maximal error (normalized with respect to the pressure drop of concentric core) is about 25%
for Qa/Qb=1 and can be practically ignored for Qa/Qb>100 or Qa/Qb<0.01.
However, for ma/mb=100 for instance (Fig. 16), the maximal error increases; it amounts to

1250% for Qa/Qb=1 and the range of ¯ow rates associated with a signi®cant error (>5%) is
wider (2 � 10ÿ3<Qa/Qb<2 � 103). Consistent with the above discussion, Fig. 14 indicates that
the two-¯uid model underpredicts the viscous core hold-up (and overpredicts its velocity,
Fig. 15), but the large errors indicated in Fig. 14(d±f)Fig. 15(d±f) are for low ~Q where the core
phase hold-up is very low and no lubrication e�ect can be achieved (d ~Pa/dZ>1 in Fig. 13(d±
f)).
The other extreme of f*40 in Figs. 13±15 corresponds to a fully eccentric core of the less

viscous phase. The exact solution for this con®guration (Rovinsky et al., 1997) yields a
pressure drop which is lower than the value corresponding to a concentric core. But, the
variation due to the core eccentricity was shown to be limited to 35% (approached for high ~m).
Hence, the extent of agreement of the two-¯uid model with the exact solution, as shown in

Figs. 13±15 for ~m=8 and various f*, practically applies for any ~m, except when the ¯ow
con®guration approaches that of a fully eccentric viscous core (f*4360 for ~m>> 1, or f*40
for ~m<<1).

7. Conclusion

The vast majority of strati®ed two-phase models assume that a plane interface is the basic
con®guration. This study shows that in many practical two-phase systems, when the
assumption of a plane interface is relaxed, the ¯uids interface attains a concave or convex
shape.
In previous studies (Brauner et al., 1995, 1996a; Rovinsky et al., 1997), exact analytical

solutions for the two-dimensional velocity pro®les in laminar strati®ed ¯ows with curved
interfaces were obtained. For practical applications, however, it is necessary to have a model
which can also handle turbulent ¯ows and mixed-¯ow regimes in the two phases.
In this study, a two-¯uid model is used for modelling strati®ed ¯ows with curved interfaces.

The solutions of the two-¯uid model are used to construct `¯ow monograms' which provide a
relation between a speci®ed interface curvature and the in situ hold-up under given operational
conditions. A closure relation for determining the interface curvature is obtained by invoking
the principle of minimal total system energy (sum of potential and surface energies). The
closure relation is represented by an interface monogram.
The combination of the system `interface monogram' with the system `¯ow monogram'

yields an `operational monogram', which provides a complete solution for the ¯ow problem.
The solution includes the interface shape, in situ hold-up and the associated pressure drop. The
construction of operational monograms is demonstrated for laminar, turbulent or mixed ¯ow
regimes in the two-phases, for horizontal and inclined systems. The information needed for
constructing the system operational monogram is de®ned in terms of nondimensional input
parameters. It includes the ratio of the ¯uids input ¯ow rates, viscosity ratio, density ratio,
wall/phases adhesion (wettability angle) and the EoÈ tvoÈ s number. The latter represents the ratio
of surface tension and gravity forces, as determined by the ¯uids surface tension, density
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Fig. 16. Comparison of the results of the two-¯uid model with the exact solution for ~m � 100; ~Q=100 (curves
notation as in Figure 15).
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di�erential, tube diameter and gravitational ®eld. For mixed ¯ow regime and inclined systems,
the Reynolds number of either one of the phases should also be provided. It is shown that the
interface curvature may signi®cantly a�ect the strati®ed ¯ow characteristics.
Experimental data obtained by Valle & Kvandal (1995) for strati®ed ¯ow of an oil±water

system is used to verify the model. The comparisons with the experimental data of the in situ
¯ow con®guration and the corresponding pressure drop highlight the potential o�ered by the
model to improve the predictions of strati®ed ¯ow characteristics in liquid±liquid systems and
other two-¯uid systems of a nonvanishing EoÈ tvoÈ s number.
The accuracy of the model and its limitations are tested by comparing its predictions, when

applied for laminar ¯ows, with the corresponding exact solutions (Brauner et al., 1995;
Rovinsky et al., 1997). The comparison shows that the two-¯uid model provides a reasonable
estimate of the in situ hold-up and pressure drop over a wide range of interfacial curvature and
¯ow rates. The biggest errors are obtained when the two ¯uid model is applied for a
con®guration of a fully eccentric highly viscous core, in which case the two-¯uid model
signi®cantly overpredicts the lubrication e�ect of the less viscous phase.
It should be noted, however, that the inherent limitations of the two-¯uid model in re¯ecting

the consequences of variations of the velocity pro®les are expected to be pronounced mostly in
laminar ¯ows. It can be speculated that for turbulent ¯ows the accuracy of the two-¯uid model
may turn out to be even better.
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